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Abstract. A conformal dimension (A} dependent (p, q)-deformed Virasoro ((p, q)-
Virasoro) algebra with two independent deformation parameters ( p, g} is constructed. The
comultiplication rule for the generating functional for A =0, 1 case is established and found
to be depending on p and g individually. The central charge term for the (p, g)-Virasoro
algebra is described. A { p, g)-deformed nonlinear equation ({ p, g}-Kdv) corresponding to
{p, g)-Virasoro algebra for A=0, I case is obtained.

1. Introduction

Recently there have been many attempts [1-7] towards finding a quantum deformation
of Virasoro algebra. Considering algebras with a single deformation parameter {g-
Virasoro), these authors studied the multiplicative structure, the comultiplication rule
for the deformed generators [ 6], the deformation of the central extension term [3, 5, 7]
and the deformed Korteweg-de Vries {g-kdv) equation [4] corresponding to the
q-Virasoro algebra. In particular, Chaichian et af [7] considered a g-deformation of
the differential realization of the centreless Virasoro algebra and obtained a conformal
dimension (A) dependent deformed structure which satisfied a deformed Jacobi iden-
tity. This requirement led to a central extension of the deformed Virasoro algebra
compatible with the conventional centre in the g -1 limit.

In an alternate development, the construction and the representation theory for
the quantum groups and algebras with multiple deformation parameters have been
studied [8-15]. Based on an oscillator realization with two independent parameters
(p, q) the present authors constructed [14] a centreless (p, g)-deformed Virasoro
{({p, g)-Virasoro) algebra. Using the results of ( p, g}-analysis developed therein, here
we obtain, a fa Chaichian er al [7], a A-dependent differential realization of the
{ p, q)-Virasoro algebra. This algebra satisfies a (p, g)-deformed Jacobi identity and
thereby a central extension term for the algebra may be established. The centreless
deformed (p, g)-Virasoro algebra, we find, depends essentially on one parameter
(Q =+pq). However, as emphasized by Schirrmacher et al [13] in another context,
whether (p, g) are two genuinely independent parameters, is to be settled by the
structure of the comultiplication rule. Following Devchand er al [6] we use a continuum
formulation for the ( p, g)-Virasoro algebra in the A =0, 1 case to obtain a comultiptica-
tion rule for the ( p, g)-deformed generating functional, which truly depends on both
parameters. For a generic A (#0, 1), we could not obtain the relevant comultiplication
rule, but, it is natural to assume that the above-mentioned qualitative feature for A=0, 1
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case would persist for an arbitrary A. Further, the central extension term is found to
depend on p and q individually, and not necessarily Q alone, showing that g and g
are two genuinely independent deformation parameters.

The close kinship [16, 17] between the Virasoro algebra and the xav equation was
followed by Chaichian et al [4] to obtain a g-deformed kdv equation corresponding
to the g-Virasoro algebra. A similar treatment links our ( p, ¢)-Virasoro algebra {3.21)
for the A=0, I case with a (p, g)-deformed nonlinear structure (( p, g)-xav}, which in
the undeformed limit (p, ¢= 1) reduces to the usual Kav equation. The constructions
of a (p, q)-Virasoro algebra for an arbitrary A (#0,1) and for A=0,} cases are
described in sections 2 and 3 respectively. We conclude in section 4.

2. (p, q)-Virasoro algebra for an arbitrary A (#0,1)
To construct a ( p, g)-Virasoro algebra we closely follow the well known route For the

undeformed case. An arbitrary primary field ¢,(z) with the conformal dimension A
transforms under an infinitesimal coordinate transformation

zz+e(z) {2.1)
as

Secarpalz) = (2)" %9, (e(2)" $al2)). (2.2)
For the choice

e(z) =" (2.3)
we obtain

Baba(z) = Lpa(z) = (20, + Bln+1) ~n)z"P,(2) (2.4)
where the generators £, satisfy the centreless Virasoro algebra

(s lnl=(m—n)E,, . (2.5)

Following the above strategy, we define the infinitesimal ( p, q)-transformation for
the primary field ¢5(z) as

878, ba(z) = £(2) T Dy (e(2) dal2)) (2.6)
where the {p, g)-deformed derivative is given [14] by
flgzn)—f(p'2)

D, f(z)= T =z""z8,]f (2} 2.7
and
(x]=L22 (28)
q-p
For the choice (2.3) we define the {p, q)-Virasoro generators L\’ by
80 1¢a(z)= LV pa(z) =[28. T A(n+1) —n]2"$,(2). (2.9)

For an arbitrary A (#9, 1) the generators L\ satisfy a closed algebraic structure

LL, L e =g —p ) g™ xag " —¥ag ™) ~p N olx,p" ~yap"NBLEY,,  (2:10)



A {p, g)-deformed Virasore algebra 2609

where

[4, Bl.,=xAB—yBA (2.11)
Ny=z3,+A (2.12)
[Ny, L] =nl® (2.13)

_ {9\ [na—-1)){Am]
% (p) [elme] (214)

g\" [m(8-1)][An]
—(4y Lmta—Dilan] 2.15
s (p) [n]lm] @13)

The construct (2.10), in the limit p =g, agrees with the g-Virasoro algebra obtained
by Chaichian et al [7]. The algebra {2.10) may be regarded as a ( p, g)- Virasoro algebra
foranarbitrary A (#0, 1) and reduces to (2.5) in the limit ( p, ¢ - 1), The operator-valued
structure constants in (2.10) depend on the conformal dimension A and the generator
of the scale transformation L (={ N,]). With a redefinition of the parameters

Q=vpq A=vp/q (2.16)

the algebra (2.10) may, however, be mapped to the Q-Virasoro algebra studied by
Chaichian et al [7]. The mapping is given by

EN = AN LY, (2.17)
The generators £ satisfy the algebra
[£2, 22)g,2

=(Q-Q7 Y {QM(x2Q"-y8Q™

- QT (x3Q -~ yZQTNEL (2.18)

where
o_[n(A—1}]o[Amlg

BT Thlomle 219

Ya [nlolmle (2.20)

[xlo= % g_ (2.21)

To understand whether p and g are two genuinely independent quantization parameters,
one must siudy the comuliiplication rules for the { g, g)-Virasoro generators L. For
the present case of an arbitrary A (#0, 1) we could not find the comultiplication rule.
An exactly analogous situation, however, also develops in the A= 0, 1 case discussed
later. There, the structure of the corresponding comultiplication rule depends on both
Q and A. Consequently, p and g may be regarded as two independent deformation
parameters. An understanding of the comultiplication rule for L'® for a generlc A
(#0, 1) is, therefore, important.

Using a suitably deformed commutator (2.10) may be written in a more transparent
form with numerical structure constants

(LY, L3k, 5., =Lm—n]L2, (2.22)
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where
Ram=(q" "= 0" "™ VXum(a, p™") (2.23)
Sun =" " =P""" ) Xmn (P, 9) (2.24)
" Im(A-1D][An
fa\™ "rmm_mrmﬂ A
() ) 229)

The numerical structure constants in (2.25) facilitate the construction of a (p, g)-
deformed Jacobi identity. To this end, we use the identity

2k
(p) [[ 1] [m—k][m+ n— k] + cyclic permutations =0 (2.26)
to establish
[2k] (&) ry(a) y(a) : :
p (k] =Ly Ly, L IR, Sin Ry s $uamy T CYCliC permutations = 0. (2.27)

The identity {2.27) may be used to search for a ( p, g)-deformation of the central term
of the Virasoro algebra. We assume a central extension of the algebra (2.22)

[£, Lk, s, =[m =] L + 80imoCalg, P) (2.28)
where the following property

(L, €(4 P)Ine.50 = 0 (2.29)
is assumed to be valid. With further assumption of a factorization scheme

Cule, p)=T(NJC.(g, p) (2.30)

where the entire n-dependence resides in the c-number term C,(g, p), we obtain
from (2.27)-(2.30)

2
(p) [[kk]] [m—n]Ci(q, p}8iimeno+ cyclic permutations = 0. (2.31)

The solution of (2.31) is
—2n [n]

Cn(q,p)=C(q,p)(p) [2n]

where C(g, p) is an arbitrary function of (p, g); this possibility of dependence of
C(g, p) on p and g individually—not necessarily through Q=+vpq alone—makes p
and g independent deformation parameters. In the limit p =g, the c-number term
(2.32) reduces to the value obtained in [7]. Substituting (2.30) in (2.29), we obtain an
equation for f(NA) for each A. We enlist some special cases:

——=[n—1][n]{n+1] (2.32)

(q/p)*2LOT(NL) - T(N)LP =0 (fora=}) (2.33)
k -k
PR + A a
T Na) ”——5"— fNoLd =0 {forA=2)etc (2.34)

The solution for (2.33) is immediate
P(Ns)Y=(g/ p)™+". (2.35)
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Therefore for the physically important case A =1, corresponding to the energy density
in the Ising model, we obtain from (2.30), (2.32) and (2.35) the full central charge
term for the (p, g)-Virasore algebra

N/22n[]

Ana=1j2; - q _
C." " g p) C(q,p)() [2n ][n 1[n][n+1] (2.36)

Notice that in the limit p =g, the term C2~"/? reduces to a c-numbet.

3. (p, q)-Virasoro algebra and (p, q)-kdv equation: A =0, 1 case

For A=0,1 case we employ (2.9) to obtain the product rule

LOLY = [28,+A-n]LY,, (3.1)
which yields the following closed algebra
(LY, Loy =(a—p~) @™ (xq™" —yg™™) = p™™(xp" = yp" )} L0 (3.2)
for the arbitrary numbers x, y. For a special choice

x=1 p=g™" (3.3)
(3.2) reduces to the form

(L3, L)1 gm-n=[m —n])p~ """ L2, (3.4)
Redefining the generators

L =pMaL (3.5)
we obtain the following relations

[L®), L] om gmon = [m = n] L5, (3.6)

[L®, LX) = [m=n]pM g LY. (3.7)

Using the symmetry g<>p~', we may obtain another set of complimentary relations
for {3.4)-(3.7). From (3.6)-(3.7) we notice an su, (1, 1) subalgebra

A

[L\BJ L{lé;]p_‘.q — i{‘ia} lL(--l;‘ L\“’Jp_‘ L\-u
(L5, L] =121g 7' p(L§V + (g —p™") L87).
We may consider (3.8) as a (p, q)-generalization of the deformation considered by

Witten [18] in the context of the vertex models.
Using the redefined generators

(3.8)

FP =LY (3.9)
the algebra (3.6) may be reduced to the well known [1-3] Q-deformed Virasoro algebra
[, F W grmgn-n=[m ~nloEit . (3.10)

However, as stressed by Schirrmacher et af [12] in the context of GL, 4(2), whether p
and g are to be treated as two independent deformation parameters must be settled
by examining the comultiplication rules for the generators L\*’. Considering a con-
tinuum formulation for algebra (3.10) Devchand et al [6] constructed a comultiplication
rule for the corresponding generating functional. We extend their result to obtain a
comultiplication rule for the generators of the (p, g)-Virasoro algebra.
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In the continuum formulation [6], a single generatmg functional X(¢) replaces
I‘* and is thought to be acting on ¢ which is an element of an associative and
commutative algebra E. The {p, g)-deformed algebra (3.6) in this construction has an
arbitrary parameter « and is of the form

X(PPo)X(p7?W) - X(g°¥)X(g7%¢)

= x{(p¢)a+alp)—(( £)
\ \\ g/

.

ata

[a+a]¢)(q“w)) (3.1)

as may be seen by a Fourier decomposition.
The derivative  acts on the algebra E and may be repiaced in (3.11) with D,
defined in (2.8), provided we choose the (p, g)-exponentials

exXp,  (x) = Zom—' (3.12)

as the basis functions in the Fourier expansion of (3.11). The comultiplication rule of
the functional generator reads

AX(¢)=X(A10)DT+HID X (As¢) (3.13)

where A,.(p, q) are the operators acting on the algebra E and to be determined by
requiring that AX satisfies (3.11). Using the later criterion we obtain

(X (A" @) X (Arp W) — X (M1@°) X (A1g ")) @1
IO (X (A2p°P) X (Aap™"h) — X (A20°¥) X (A297°9))
+(X(Ap°B)® X (Axp ) — X (A147°) @ X (A2979))
(X (ApT PR X (Ap’d) — X (A1g° W)@ X (A9 7°9))

= X((p"’*“z\lcs)([aJra]A.w)—((;”)M[Ha]Alcb)(qa*“Alw)) ®1
ri@x((r e nelo+alaw)—((2)  loralne g™ am) ).
. o ’ &3.14)
From (3.11) it appears that (3.14) is satisfied provided
A(p’Fq =0 fori=1,2 and g#=p. (3.15)
A formal solution for (3.15) is
A=Ch T (1) (pg)"+CL T (21D HCL T (1P (316)

neZ nek neZ

The point we stress here is that the algebra {3.6) has two independent deformation
parameters ( p, g) as the comultiplication rule (3.13), (3.16) depends individually on
these parameters. We also notice that far the choice of the negative ‘:mn in (3.15), the

...... SQilavit: YYo Qs sd LA D vl 22 LLpniiY L ol

parameter a is to be chosen non-zero in order to make the rHs of (3. 14) non- vamshmg
The centrally extended version of the algebra (3.6) reads

[L“M L(,:-,\] p" Mg = [m - "]I‘:Sﬁ-)m“‘ 8r|+m,Oén(q= P) (3]7)
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Following a procedure parallel to the discussion in section 2 and assuming
(L2, Co(g, Pt g+ =0 (3.18)
we obtain a solution for C,,(q, ) as

G, (g, p) = Clg, p)g a2 phar2 [[ ]] [n—110n]in+11. (3.19)

Introducing the generator

2 A

LY =(qp) "Li® (3.20)
we rewrite the algebra (3.17) as a commutation relation
[E{A) L(A]] [m _n]q N, +n -N, +mL(A+)

+C(q,p)8yemog N "pTNa"" r[, ]1 [r—1][n][n+1]. (3.21)
L&)

As a physical application of the deformed (p, g)-Virasoro algebra discussed earlier,
we will now study the correspondence between the algebra (3.21) and a {p, q)-kav
equation. The well known [16, 17] interrelation between the Virasoro algebra and the
usual kdv equation was utilized by Chaichian et gl [4] to discover a g-deformed kdv
equation corresponding to g-Virasoro algebra. Their method hinges on constructing a
current which defines a bi-Hamiltonian structure and thereby satisfies a nonlinear
evolution equation. We follow this technique to describe a ( p, g)-kdv structure corres-
ponding to the algebra (3.21).

To this end, we define a current

2 .
u(o)= Y L® e, (3.22)
nel
1lsine the narametrization (2.168). we obtain the commutator
Using the p etrization (2.16), we obtain the commutator
1 ,
—[u u
7 [u(e), u(@)]
A —2e9 2ed -2N '
=——— (e u(a)-u(a) e )Q " eé(o — ')
2sine
sinh £d, sinh £(8,+1) sinh g4, sinh (3, —1) _ _
3 S { ) b { )Q MNag(o— o)
sinh 2ed,, sin” &
(3.23)
where
Q=e7". (3.24)
The commutator (3.23) admits [4] a Hamiltonian system defined by
1 2
H2=—J dou*(a) (3.25)
4ar o

which yields a (p, g)-deformed kdv equation

d=—2 (7 () = u(0) £27)(Q (o) + ul(or) QM)
4sing

A sinh €3, sinh £(a, +i) sinh ed, sinh £(3, = i)
2 sinh 2&4, sin® e
x (Q7Mau(o)+ u(o} Q7). (3.26)
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The different A-dependences of the central and the non-central terms in the rus of
(3.26), in contradistinction to the single parameter case, and the dependence of C on
both @ and A should be useful in applications. In the undeformed limit (Q=1,A=1)
we obtain the usual kdv equation.

4, Conclusion

In summary, we have obtained a A-dependent differential representation of a deformed
{p, g)-Virasoro algebra. In the A=0, 1 case we have constructed, for the generating
functional, a comultiplication rule depending individually on both parameters. A
central charge for the ( p, g)-Virasoro algebra has been described as a consequence of
a{p, q}-deformed Jacobi identity. For A =0, 1 case we have obtained a ( p, g)-deformed
Kdv equation.

Note added in proof. In the case of a centreless Virasoro algebra further generalization of the deformation,
based on the oscillator realization, has also been discussed recently [19].
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