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Abstmnet. A conformal dimension (A) dependent (p, 9)-deformed Virasoro ( (P ,  4) -  
Virasora) algebra with two independent deformation parameten (p .  q) is COnStNCted. The 
comultiplication mule far the generating functional for A =  0, I case is established and found 
to be depending on p and q individually. The central charge term far the (p .  9)-Virasoro 
algebra is described. A ( p ,  q)-deformed nonlinear equation ( ( p ,  q)-KdV) corresponding to 
(p.  4)-Viraroro algebra far P = O ,  1 case is obtained. 

1. Introduction 

Recently there have been many attempts [ 1-71 towards finding a quantum deformation 
of Virasoro algebra. Considering algebras with a single deformation parameter (9- 
Virasoro), these authors studied the multiplicative structure, the comultiplication rule 
for the deformed generators [6], the deformation of the central extension term [3,5,7] 
and the deformed Korteweg-de Vries (q-Kdv) equation [4] corresponding to the 
qVirasoro algebra. In particular, Chaichian el a/ [7] considered a 9-deformation of 
the differential realization of the centreless Virasoro algebra and obtained a conformal 
dimension (A) dependent deformed structure which satisfied a deformed Jacobi iden- 
tity. This requirement led to a central extension of the deformed Virasoro algebra 
compatible with the conventional centre in the 9+ 1 limit. 

In an alternate development, the construction and the representation theory for 
the quantum groups and algebras with multiple deformation parameters have been 
studied [8-151. Based on an oscillator realization with two independent parameters 
( p ,  9) the present authors constructed [14] a centreless ( p ,  9)-deformed Virasoro 
( ( p ,  9)-Virasoro) algebra. Using the results of (p ,  9)-analysis developed therein, here 
we obtain, 6 /a Chaichian et a/ [7], a A-dependent differential realization of the 
( p ,  9)-Virasoro algebra. This algebra satisfies a ( p ,  9)-deformed Jacobi identity and 
thereby a central extension term for the algebra may be established. The centreless 
deformed ( p ,  9)-Virasoro algebra, we find, depends essentially on one parameter 
(Q=&). However, as emphasized by Schirrmacher er a/ [13] in another context, 
whether ( p , q )  are two genuinely independent parameters, is to be settled by the 
structure of the comultiplication rule. Following Devchand er a /  [6] we use a continuum 
formulation for the ( p ,  9)-Virasoro algebra in the A =  0, 1 case to obtain a comultiplica- 
tion rule for the ( p ,  q)-deformed generating functional, which truly depends on both 
parameters. For a generic A (#O, 1 ) .  we could not obtain the relevant comultiplication 
rule, but, it is natural to assume that the above-mentioned qualitative feature for A = 0, 1 
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case would persist for an arbitrary A. Further, the central extension term is found to 
depend on p and q individually, and not necessarily Q alone, showing that p and q 
are two genuinely independent deformation parameters. 

The close kinship [16,17] between the Virasoro algebra and the KIV equation was 
followed by Chaichian er nf [4] to obtain a q-deformed KdV equation corresponding 
to the q-Vitasoro algebra. A similar treatment links our !p9 q)-Virasom s!gcbra (?.2!) 
for the A=O, 1 case with a (p, q)-deformed nonlinear structure ( ( p ,  q)-Kdv), which in 
the undeformed limit ( p ,  q + 1) reduces to the usual Kdv equation. The constructions 
of a (p,q)-Virasoro algebra for an arbitrary A ( + O , l )  and for A=O,  1 cases are 
described in sections 2 and 3 respectively. We conclude in section 4. 

R Chakrabarti and R Jagannathan 

2. ( p ,  9)-Virasoro algebra for an arbitrary A ( fa,  1) 

To construct a (p, q)-Virasoro algebra we closely follow the well known route for the 
undeformed case. An arbitrary primary field @a(z) with the conformal dimension A 
transforms under an infinitesimal coordinate transformation 

we obtain 

M d z ) =  f .+,(z)= ( z a , + A ( n + l )  - n ) z " h ( z )  (2.4) 

[ e , , f , , , I= (m-n) f ,+ , .  (2.5) 

where the generators e, satisfy the centreless Virasoro algebra 

Following the above strategy, we define the infinitesimal (p, q)-ttansfonnation for 

&?&+,(z) = ~ ( ~ ) ' - * D ~ . ~ ( E ( Z ) ~ + , ( Z ) )  (2.6) 

the primary field +&(z) as 

where the ( p ,  ¶)-deformed derivative is given 1141 by 

and 

(2.8) 

For the choice (2.3) we define the ( p ,  q)-Virasoro generators Li;" by 

Sfs+,(z)= L!,a'+~Al(z) = [ z a , + A ( n +  1 )  - n ] z " ~ $ ~ ( z ) .  

For an arbitrary A (#O, 1) the generators Ly' satisfy a closed algebraic structure 

(2.9) 

(2.10) [La', L $ ~ l x 4 * p A =  (q - p-')-'($JA(xaq-" -y2q ' " )  -p"qX,p" -y ,p")}L;y ,  
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where 

[A, E ] , ,  = xAB -YEA (2.11) 

NA = za,t A (2.12) 

[ N,, L'R'] = n p  (2.13) 

(2.14) 

(2.15) 

The construct (2.10), in the limit p = q, agrees with the q-Virasoro algebra obtained 
by Chaichian et al[7]. The algebra (2.10) may be regarded as a (p, q)-Virasoro algebra 
foranarbitraryd (#O, l)andreducesto(2S)inthelimit ( p ,  q+l).Theoperator-valued 
structure constants in (2.10) depend on the conformal dimension A and the generator 
of the scale transformation LLA' ( = I N A ] ) .  With a redefinition of the parameters 

Q=G A = J j j T i i  (2.16) 

the algebra (2.10) may, however, be mapped to the Q-Virasoro algebra studied by 
Chaichian et al [7]. The mapping is given by 

(2.17) 3 L A I  = hNA-I (A) L. . 
The generators 2LA' satisfy the algebra 

where 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

To understand whetherp and q are two genuinely independent quantization parameters, 
one m u s ~  sruuy m e  cuinuiupiicauurr IUK> 101 uic ( p ,  y i -  Y I ~ ~ S U L U  ~ S ~ F L ~ L V I S  L; '. Tor 
the present case of an arbitrary A (#O, 1) we could not find the comultiplication rule. 
An exactly analogous situation, however, also develops in the A = 0 , l  case discussed 
later. There, the structure of the corresponding comultiplication rule depends on both 
Q and A. Consequently, p and q may be regarded as two independent deformation 
parameters, An understanding of the comultiplication rule for L.? for a generic A 
(ZO, 1) is, therefore, important. 

Using a suitably deformed commutator (2.10) may be written in a more transparent 
form with numerical structure constants 

.-. ~A~~~~~ .L. s*:-%:.-.:-.. -..ne- c-_.L- I -  - \  1,: _"--_- --_-_ ~ .--- r i A l  -- ~ 

EL?' , L"" ,,I I R  ,,,.,, 5 ,.,,, = [ m  - nIL1;':"> (2.22) 



2610 

where 

R Chakrabarti and R Jagannarhan 

R., =(q"-' -p"-'")Xnm(q, P-') 
s,. =(q"-" -pn-m)Xm"(P- ' ,  4 )  

(2.23) 

(2.24) 

(2.25) 

The numerical structure constants in (2.25) facilitate the construction of a ( p ,  4 ) -  
deformed Jacobi identity. To this end, we use the identity 

[ m - k][ m + n - k] + cyclic permutations = 0 (2.26) 

to establish 

(:) -m -[Lk [2k1 ID) ,[ L(A) , L(A) , lR.,.S..lR,,,,,s.,.,+cyclicpermutations=O. (2.27) 
[k l  

The identity (2.27) may be used to search for a (p, q)-deformation of the central term 
of the Virasoro algebra. We assume a central extension of the algebra (2.22) 

[i 'R ' ,  i!,?~~.,.~,. = [ m  - n ~ i ! % , + ~ ~ + ~ , ~ & q , ~ )  (2.28) 

where the following property 

[i',"', ~ n ( % ~ ) l R ~ o , S o ~  = o  (2.29) 

is assumed to be valid. With further assumption of a factorization scheme 

e,,(% P) =F(NdC.(q, P) (2.30) 

where the entire n-dependence resides in the c-number term C.(q ,p) ,  we obtain 
from (2.27)-(2.30) 

(:)-mE [m - n]Ck(q, p)Sk+,+,,,,+cyclic permutations = 0. (2.31) 

The solution of (2.31) is 

(2.32) 

where C ( q , p )  is an arbitrary function of ( p ,  4 ) ;  this possibility of dependence of 
C ( q , p )  on p and q individually-not necessarily through Q=G alone-makes p 
and q independent deformation parameters. In the limit p = q, the c-number term 
(2.32) reduces to the value obtained in [7]. Substituting (2.30) in (2.29). we obtain an 
equation for f (  N A )  for each A. We enlist some special cases: 

(q/p)k/2i~A'f(NA)-P(NA)ijp'=0 (for A =$) (2.33) 

;lAJ& XI 1 ~~~~ fit \ i?AJ - n L h  ' \ ' * A , - -  I ( ' * A , L *  -" IC-- A - 71 ~ t r  (2.34) pk + q-* 
,,U1 Y - L, b L " .  

2 

The solution for (2.33) is immediate 

f ( N , ) = ( q / p ) N " Z .  (2.35) 
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Therefore for the physically important case A = f ,  corresponding to the energy density 
in the king model, we obtain from (2.30), (2.32) and (2.35) the full central charge 
term for the (p, q)-Virasoro algebra 

Notice that in the limit p = q, the term e:-'/' reduces to a c-number. 

3. ( p ,  q)-Virasoro algebra and ( p ,  q)-Kdv equation: A =0, 1 case 

For A = 0 , l  case we employ (2.9) to obtain the product rule 

L~A'L',J=[zd,+A-n]Ljp!, (3.1) 

which yields the following closed algebra 

[LW n , L(AJ m I , , = ( 9 - p - ' ) - ' { q N " ( x q - "  - y q - m ) - P - N n ( x P " - y P m ) ) L ( R ! ,  

for the arbitrary numbers x, y.  For a special choice 

(3.2) 

x = l  = q m - n  (3.3) 

[L!,?, ~',~], , , ---=[m - n]p-N~+mLIP:m. (3.4) 

f 'RJ=pNb~!AI (3.5) 

(3.2) reduces to the form 

Redefining the generators 

we obtain the following relations 

[ i ( A )  n , i ( A J ]  m p"-*.q l.ll = [ m  - fl]i3m (3.6) 

(3.7) [ i ~ A ' , i ' , J ] = [ m - n ] p  N ~ - "  q ~ ~ - m  L " + ~ .  - (AJ 

Using the symmetry q - p - ' ,  we may obtain another set of complimentary relations 
for (3.4)-(3.7). From (3.6)-(3.7) we notice an s u , J l ,  1) subalgebra 

.- , A i  .-,*, 
[,f(L; f \ L j j  _, = f < A J  LLL;', &"'J -s = L1;' 

(3.8) 

We may consider (3.8) as a ( p ,  q)-generalization of the deformation considered by 
Witten [18] in the context of the vertex models. 

0 ,  P A 1 P .4 

[ iL\ ) ,  iy] = [2 ]q -*p( iy '+  ( q  -p-')ib"J*). 

Using the redefined generators 

& A J = A - I L ( A J  (3.9) 
the algebra (3.6) may be reduced to the well known [1-3] @deformed Virasoro algebra 

(3.10) 

However, as stressed by Schirrmacher el a/  [12] in the context of GL,,(2),  whether p 
and q are to be treated as two independent deformation parameters must be settled 
by examining the comultiplication rules for the generators LLA). Considering a con- 
tinuum formulation for algebra (3.10) Devchand er a1 [6] constructed a comultiplication 
rule for the corresponding generating functional. We extend their result to obtain a 
comultiplication rule for the generators of the ( p ,  q)-Virasoro algebra. 

[ g ( A I  n , Pi.'") m ] Q".'" ,v"'-"= [ m  -nlV2"R:,. 
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In the continuum formulation [6], a single generating functional X(+)  replaces 
and is thought to be acting on + which is an element of an associative and 

commutative algebra E. The (p, q)-deformed algebra (3.6) in this construction has an 
arbitrary parameter a and is of the form 

X(P")x(P-") - X(qd$)X(q-d+) 

(3.11) 

as may be seen by a Fourier decomposition. 

defined in (2.8), provided we choose the (p, q)-exponentials 
The derivative J acts on the algebra E and may be replaced in (3.11) with Dp,9 

(3.12) 

as the basis functions in the Fourier expansion of (3.11). The comultiplication rule of 
the functional generator reads 

AX(+) =X(A,+)@U+U@X(A2+) (3.13) 

where A,.2(p. q )  are the operators acting on the algebra E and to be determined by 
requiring'that AX satisfies (3.11). Using the later criterion we obtain 

a t e  

+U@X( ( P ' + ~ A ~ + ) ( [ J +  a lA2$)  - ((') . . a .. [J+ a l A ~ + ) ( q ~ + ~ A ~ $ ) ) .  

(3.14) 

From (3.11) it appears !hat (3.14) is satisfied provided 

A i ( p a f q - ' ) +  = O  for i = 1 , 2  and q zp-1. (3.15) 

A formal solution for (3.15) is 

Ai=CA 1 (*l)"(pq)"+C: 1 (*l)"pi"t"n q "' +C!, 1 (*l)"p"dq("+l)d. (3.16) 
n e 2  n s z  n s z  

The point we stress here is that the algebra (3.6) has two independent deformation 
parameters ( p .  q )  as the comultiplication rule (3.13). (3.16) depends individually on 
these parzmeters. We '!so co!ice !!I*! for !he choice of !he r?egz!ive r i p  ir? !3.!2), the  
parameter a is to be chosen non-zero in order to make the RHS of (3.14) non-vanishing. 

[ikA', i~'],~,-,,:,- = [m - n ~ ~ , + . , + f i , , + , , ~ t ~ ( q ,  *(AI p ) .  (3.17) 

The centrally extended version of the algebra (3.6) reads 
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Following a procedure parallel to the discussion in section 2 and assuming 

we obtain a solution for e " ( 4 . p )  as 
[tiA", &.P)lp*,*-fi = 0 (3.18) 

[ n  - l][n][n+ 11. (3.19) 

Introducing the generator 

we rewrite the algebra (3.17) as a commutation relation 

L'R'=(qp)- N A i ( A l  n 

[&AI, Lzl] = [m - ,,I~-N,,+~ -NA+m '!A) P L"+", 

(3.20) 

(3.21) 

As a physical application of the deformed ( p ,  9)-Virasoro algebra discussed earlier, 
we will now study the correspondence between the algebra (3.21) and a ( p ,  q)-Kdv 
equation. The well known [16,17] interrelation between the Virasoro algebra and the 
usual Kdv equation was utilized by Chaichian er a/  [4] to discover a q-deformed Kdv 
equation corresponding to q-Virasoro algebra. Their method hinges on constructing a 
current which defines a bi-Hamiltonian structure and thereby satisfies a nonlinear 
evolution equation. We follow this technique to describe a (p, q)-Kdv structure corres- 
ponding to the algebra (3.21). 

[nl + C ( q , p ) S " + , , o q - N a - n p - N ~ + n  - [n- l l [n l [n+l ] .  
[?xj 

To this end, we define a current 

(3.22) '!AI -in* u ( u ) =  2 L,  e . 
nsz 

using thc pEr2metrizEtion (2,!h), wc obt2in the CO"??tltOl 

(e-"'*u(U) - u ( u )  e2za-)Q-2NG(u - U') 
A 

2 sin E 

-~ - 

sinh &a,, sinh &(J,+i) sinh &a, sinh &(J,-i) 
sinh 288, sin' E 

-CA' , Q-"G(u- U ' )  

(3.23) 
where 

Q = e-'e, (3.24) 
The commutator (3.23) admits [4] a Hamiltonian system defined by 

which yields a ( p ,  9)-deformed Kdv equation 

(e-2'a-u(u)-u(u) e 2 " ' ~ ) ( Q - 2 N ~ u ( u ) + u ( u ) Q - 2 N ~ )  
A 

4 sin E 
=- 

A 3  sinh &a, sinh &(J,+i) sinh &J, sinh &(J,-i) 
2 sinh2&J, sin' E 

- C- 

(3.25) 

(3.26) x ( Q - 2 N ~ u ( ~ )  + u ( u ) Q - ~ ~ " ) .  
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The different A-dependences of the central and the non-central terms in the RHS of 
(3.26), in contradistinction to the single parameter case, and the dependence of C on 
both Q and A should be useful in applications. In the undeformed limit ( Q  = 1, A = 1) 
we obtain the usual K d v  equation. 

R Chakrabarti and R Jagnnnathan 

4. Conclusion 

In summary, we have obtained a A-dependent differential representation of a deformed 
(p, q)-Virasoro algebra. In the A = 0, 1 case we have constructed, for the generating 
functional, a comultiplication rule depending individually on both parameters. A 
central charge for the (p, q)-Virasoro algebra has been described as a consequence of 
a ( p ,  q)-deformed Jacobi identity. For A = 0 , l  case we have obtained a ( p ,  q)-deformed 
Kdv equation. 

Note odded in pro05 In the case of a centreless Virasoro algebra funher generalization of the deformation. 
based on  the oscillator realization, has also been discussed recently [19]. 
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